RC5032

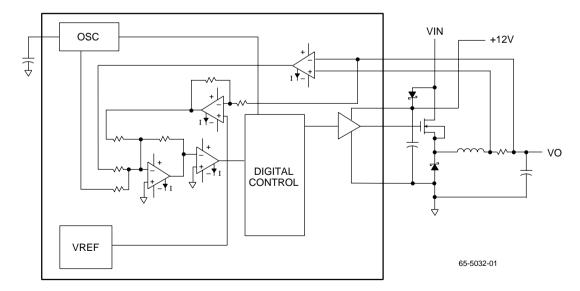
5V to 3.3V Step-Down DC-DC Converter

Features

- >85% Efficiency
- · Fast transient response
- Soft control power-up
- · Short circuit protection
- Output voltage fixed 3.3V
- · Low TC reference voltage
- Adjustable oscillator frequency
- · Drives N-Channel MOSFET
- 8 pin SOIC, 8 pin DIP package

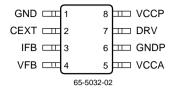
Applications

- 3.3V power supply for PentiumTM based desktop CPU motherboards
- Minimum component DC-DC converters


Description

The RC5032 is a step-down DC-DC controller IC dedicated to providing a 5V to 3.3V conversion for various types of CPU power. It can be configured with the proper applications circuitry to deliver load currents greater than 10 Amps. The RC5032 is designed to operate in a standard PWM control mode under heavy load conditions and as a PFM controller in light load conditions. Its highly accurate low TC reference

eliminates the need for precision external components in order to achieve tight tolerance voltage regulation.


The programmable oscillator can operate from 200KHz to greater than 1MHz to provide for flexibility in choosing external components such as inductors, capacitors, and Power MOSFETs.

Block Diagram

Rev. 0.9.6

Pin Assignments

Pin Definitions

Pin Name	Pin Number	Pin Function Description
GND	1	Ground
CEXT	2	External capacitor for setting oscillator frequency
IFB	3	Current Feedback Input
VFB	4	Voltage Feedback Input
VCCA	5	Analog VCC
GNDP	6	Power ground for high current driver
DRV	7	FET Driver Output
VCCP	8	VCC for FET output drivers

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Paramete	er	Conditions	Min	Тур	Max	Units
VCCP	Driver Supply				13	V

Note:

Operating Conditions

Parameter		Conditions	Min	Тур	Max	Units
VCC	Supply Voltage		4.5	5	7	V
VCCP	Driver Supply		9		13	V
VIH	Input Voltage, Logic HIGH		2			V
VIL	Input Voltage, Logic LOW				0.8	V
	Ambient Temp		0		70	°C

^{1.} Functional operation under any of these conditions is NOT implied. Performance is guaranteed only if Operating Conditions are not exceeded.

DC Electrical Characteristics

(V_{CC} = 5V, Fosc = 650 KHz, and $T_A = 0-70$ °C)

Parameter		Conditions	Min	Тур	Max	Units
Vo	Output Voltage		3.1	3.4	3.6	V
lo	Output Current	See Figure 1 for application		7		Α
Vref Acc	Reference Accuracy			1	3	%
VTC	Output Voltage TC			40		ppm
LDR	Load Regulation	0.5 to 7A		0.5		%Vo
LIR	Line Regulation	Vcc = ±5%		0.07		%Vo
VR	Output Voltage Ripple			30		mV
Cum Acc	Cumulative Accuracy ¹	T _A = 0-70°C		3	5	%
Eff	Efficiency	Iload > 4A	85	88		%
lodr	Output Driver I	Open Loop	0.5	0.7		Α
Pd	Power Dissipation			0.1		W

Notes:

AC Electrical Characteristics

 $(VCC = 5V, Fosc = 650 \text{ KHz}, \text{ and } T_A = 25^{\circ}C)$

Parameter		Conditions	Min	Тур	Max	Units
Tr	Response Time	II=0.5A to 7A		10		μs
Fosc	Oscillator Range		0.2		1.2	MHz
Osc Acc	Fosc Accuracy			10		%
Dtc	Max Duty Cycle	PWM mode	90	95		%
Dtcm	Min Duty Cycle	PFM mode			100	ns
Iscp	Short Circuit Prot			250		mV
Trimax	Response to Imax			15	30	μs
Tssp	Soft start response			1		ms

^{1.} Output Voltage accuracy, Tempco, load regulation, ripple, and transient performance determine the Cumulative Accuracy.

Test Circuit

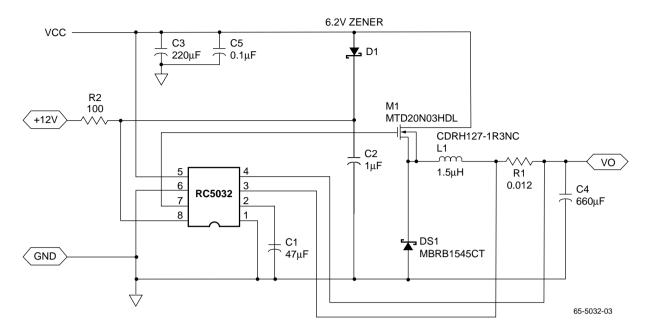
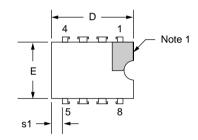
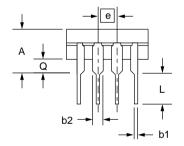


Figure 1. RC5032 7A Schematic

Table 1. Components for RC5032

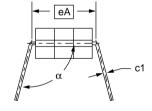
RC5032 Standard Application Circuit Bill of Materials						
Ref Designator	Quantity	Part No.	Manufacturer			
L1	1	CDRH127-1R3NC	Sumida			
M1	1	MTD20N03HDL	Motorola			
DS1	1	MBRB1545CT	Motorola			
D1	1	6.2V Zener	any			
R1	1	LRC-2512	IRC			
C3	1	OS-CON 10SA220M	Sanyo			
C4	2	OS-CON 10SA330M	Sanyo			
C2	1	1uF	Monolithic ceramic Cap			
C1	1	47pF	SMD Cap			
C5	1	0.1uF	SMD Cap			
R2	1	100Ω	SMD Res			


Notes


Preliminary Information

Mechanical Dimensions

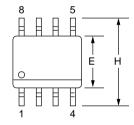
8 Lead Ceramic DIP Package

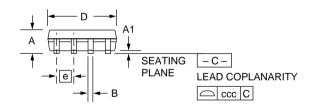

Symbol	Inches		Millim	Notes	
Syllibol	Min.	Max.	Min.	Max.	Notes
Α	_	.200	_	5.08	
b1	.014	.023	.36	.58	8
b2	.045	.065	1.14	1.65	2, 8
c1	.008	.015	.20	.38	8
D	_	.405	_	10.29	4
E	.220	.310	5.59	7.87	4
е	.100	BSC	2.54	BSC	5, 9
eA	.300	BSC	7.62	BSC	7
L	.125	.200	3.18	5.08	
Q	.015	.060	.38	1.52	3
s1	.005	_	.13	Ė	6
α	90°	105°	90°	105°	

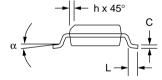
Notes:

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads number 1, 4, 5 and 8 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within \pm .010 (.25mm) of its exact longitudinal position relative to pins 1 and 8.
- 6. Applies to all four corners (leads number 1, 4, 5, and 8).
- 7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " α " is 90°.
- 8. All leads Increase maximum limit by .003 (.08mm) measured at the center of the flat, when lead finish applied.
- 9. Six spaces.

Preliminary Information


Mechanical Dimensions (continued)


8 Lead SOIC Package


Cumbal	Inches		Millim	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes
Α	.053	.069	1.35	1.75	
A1	.004	.010	0.10	0.25	
В	.013	.020	0.33	0.51	
С	.008	.010	0.20	0.25	5
D	.189	.197	4.80	5.00	2
Е	.150	.158	3.81	4.01	2
е	.050	.050 BSC		BSC	
Н	.228	.244	5.79	6.20	
h	.010	.020	0.25	0.50	
L	.016	.050	0.40	1.27	3
N	8	3	8		6
α	0°	8°	0°	8°	
ccc	_	.004	_	0.10	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "C" dimension does not include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.

PRODUCT SPECIFICATION RC5032

Ordering Information

Product Number	Package	θЈА
RC5032M	8 SOIC	85°C/W

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics Semiconductor Division 350 Ellis Street Mountain View CA 94043 415 968 9211 FAX 415 966 7742